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Stress in plants could be defined as any change in growth condition(s) that

disrupts metabolic homeostasis and requires an adjustment of metabolic

pathways in a process that is usually referred to as acclimation. Metabolomics

could contribute significantly to the study of stress biology in plants and other

organisms by identifying different compounds, such as by-products of stress
metabolism, stress signal transduction molecules or molecules that are part of

the acclimation response of plants. These could be further tested by direct

measurements, correlated with changes in transcriptome and proteome

expression and confirmed by mutant analysis. In this review, we will discuss

recent application of metabolomics and system biology to the area of plant

stress response. We will describe approaches such as metabolic profiling and

metabolic fingerprinting as well as combination of different ‘omics’ platforms

to achieve a holistic view of the plant response stress and conduct detailed
pathway analysis.

Introduction

Environmental stress could be defined in plants as any

change in growth condition(s), within the plant’s natural

habitat, that alters or disrupts its metabolic homeostasis.

Such change(s) in growth condition requires an adjust-

ment of metabolic pathways, aimed at achieving a new

state of homeostasis, in a process that is usually referred to
as acclimation (Mittler 2006, Suzuki and Mittler 2006).

Several different phases are thought to be involved in

acclimation. In the initial stages, the change in environ-

mental condition is sensed by the plant and activates

a network of signaling pathways. In later phases, the

signal transduction pathways activated in the first phase

trigger the production of different proteins and com-

pounds that restore or achieve a new state of homeostasis.
From the standpoint of metabolomics, at least three

different types of compounds are important for these

processes: (1) compounds involved in the acclimation

process such as antioxidants or osmoprotectants; (2) by-

products of stress that appear in cells because of the

disruption of normal homeostasis by the alteration(s) in

growth conditions; and (3) signal transduction molecules

involved in mediating the acclimation response. The

signal transduction molecules could be newly synthe-
sized compounds or compounds that are released from

their conjugated form(s), such as the plant hormone

salicylic acid, or they could be different by-products of

stress metabolism (similar to point 2 mentioned above)

that signal disruption of cellular homeostasis. The second

type of signaling molecules could include by-products of

membrane degradation, different reactive oxygen species

(ROS) or various oxidized compounds such as phenolic
compounds or even some antioxidants (Mittler 2002,

Mittler et al. 2004).

Abbreviations – CE-MS, capillary electrophoresis–mass spectrometry; DFA, discriminant function analysis; EI, electron impact;

FT-IR, Fourier transform infrared; GAs, genetic algorithms; GC, gas chromatography; LC-MS, liquid chromatography–mass

spectrometry; PCA, principal component analysis; PLS, partial least squares; ROS, reactive oxygen species; SOMs, self-organizing

maps; TOF, time-of-flight.
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A few examples for plant metabolites involved in

biotic/abiotic stress responses include compounds such

as polyols mannitol and sorbitol; dimethylsulfonium

compounds, such as dimethylsulfoniopropionate, gly-

cine betaine; sugars such as sucrose, trehalose and

fructan; or amino acids such as proline and ectoine that
serve as osmolytes and osmoprotectant to protect plants

under extreme salt, drought and desiccation stresses. A

variety of epicuticular waxes protect plants from excess

water loss during drought and serves as a mechanical

barrier to confront pathogens. The saturation level of

membrane fatty acids can significantly alter chilling

tolerance. Many small molecules protect plants from

oxidative damage associated with a variety of stresses.
Ascorbic acid, glutathione, tocopherols, anthocyanins

and carotenoids protect plant tissues by scavenging

active oxygen intermediates generated during oxidative

stress. The plant defense response is associated with the

production of phytoalexins, activation of the general

phenylpropanoid pathway and induction of lignin

biosynthesis. Salicylic acid, methyl salicylate, jasmonic

acid, methyl jasmonate and other small molecules
produced as a result of stress can also serve as signaling

molecules activating systemic defense and acclimation

responses.

In view of the above, it is clear that the field of

metabolic profiling could contribute significantly to the

study of stress biology in plants and other organisms. A

detailed time-course metabolic profiling analysis of

plants subjected to stress could lead to the identification
of many of the compounds mentioned above. These

could be further tested by direct measurements, corre-

lated with changes in transcriptome and proteome

expression, and confirmed by mutant analysis. With

respect to the studies described above, metabolic pro-

filing could in fact be the most important tool in

identifying the early compounds that signal the percep-

tion of stress because these would act even before any
change(s) in the transcriptome or proteome could be

detected. In this review, we will summarize some of the

key tools and techniques used to study themetabolome of

plants during stress.

Metabolomics technology

Metabolomics is a rapidly developing technology. Major

approaches currently used in plant metabolomics re-

search include metabolic fingerprinting, metabolite pro-

filing and targeted analysis (Fiehn 2002, Halket et al.

2005, Shulaev 2006). Depending on the question asked
in each particular study, specific metabolomics appro-

aches or their combination are used. Some of these are

described below.

Metabolic fingerprinting

Metabolic fingerprinting is largely used to identify
metabolic signatures or patterns associated with a partic-

ular stress response without identification or precise

quantification of all the different metabolites in the

sample. Pattern recognition analysis is then performed

on the data to identify features specific to a fingerprint.

Fingerprinting can be performed with a variety of

analytical techniques, including NMR (Krishnan et al.

2005), MS (Goodacre et al. 2003), Fourier transform ion
cyclotron resonance mass spectrometry or Fourier trans-

form infrared (FT-IR) spectroscopy (Johnson et al. 2003).

One of the limitations of NMR spectroscopy is its low

sensitivity, which makes it difficult to detect low-

abundance cellular metabolites. MS has an advantage

over NMR in terms of resolving power, providing higher

sensitivity and lower limit of detection. However, MS

generates more complex spectrum because of the
formation of product ions and adducts, and its results

comes in a form of discriminant ions. This can provide

a significant challenge for data validation. Using MS

with different classification tools, a larger subset of

metabolites associated with the phenotype can be

identified.

Metabolic fingerprints can be analyzedwith avariety of

pattern recognition and multivariate statistic techniques
(Sumner et al. 2003). Both unsupervised and supervised

algorithms have been used in fingerprinting, although

supervised techniques generally show greater discrimi-

nation power. Unsupervised techniques most often used

with metabolomics data include principal component

analysis (PCA), self-organizing maps (SOMs) and hierar-

chical clustering, while supervised algorithms include

discriminant function analysis (DFA), partial least squares
(PLS) and ANOVA. Most metabolomics data sets are

underdetermined, meaning they contain many more

variables than samples (Kohane et al. 2003), and for

proper statistical analysis, it is important to reduce the

number of variables to obtain uncorrelated features in

the data. This can be achieved by using evolutionary

algorithms such as genetic algorithms (GAs) or genetic

programming (Pena-Reyes and Sipper 2000). For metab-
olomics applications, evolutionary algorithms are typi-

cally combined with the secondary algorithm (e.g. DFA

or PLS) (Goodacre 2005).

In order to increase sample throughputmass spectra are

usually obtained using direct infusion of the analytical

sample into a mass spectrometer, i.e. without fraction-

ation. However, direct infusion has problems, mostly

because of a phenomenon known as cosuppression
where the signal of many analytes can be lost at the mass

spectrometer interface.
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To minimize the cosuppression effect, samples can be

separated using very rapid gradients with a short chro-

matographic column and the HPLC-MS data can then be

analyzed using multivariate analysis to identify the

discriminant ions. To confirm the fingerprinting results,

samples are then re-analyzed with long HPLC gradient.
This two-step fingerprinting/validating strategy was used

to characterize thewound response in Arabidopsis (Grata

et al. 2007).

In our laboratory, we have been employing a similar

approach to metabolic fingerprinting where we actually

carry out a chromatographic or electrophoretic separa-

tion prior to theMS. This is similar towhat is performed for

metabolite profiling, except that we do not attempt to
identify all the molecules responsible for the peaks in the

separation, rather, we focus on those that demonstrate to

be discriminant between groups. This approach signifi-

cantly reduces the cosuppression effect seen in direct

infusion MS, the dominant method used for finger-

printing. Fig. 1 shows the comparison of the summary

mass spectrum obtained following chromatographic

separation using capillary column or direct infusion.
Distribution of m/z within the acquisition mass range

of 100–1500 atomic mass units using chromatography

prior to MS shows ions at m/z 404, 579, 636, 740, 824,

1173, 1343 and 1392 corresponding to important plant

metabolites including flavonoids and anthocyanins.

These and many other ions are almost undetectable in

the mass spectrum obtained by direct infusion because of

the matrix suppression effect. Following the data acqui-
sition, we have a data cube consisting of thousands of

mass spectra at different elution times. This is then

transformed into a single cumulative mass spectrum that

is equivalent to what a direct infusion mass spectrum

would be minus the cosuppression interference. This

cumulative spectrum is then used for sample discrimina-

tion using statistical and machine-learning algorithms.
Since all the original data cube where the separation data

are actually kept for later analysis, we can inspect its

details and identify specific molecules of interest against

a library without a need for additional experiments.

Metabolite profiling

Metabolite profiling is aimed at a simultaneous measure-
ment of all or a set of metabolites in a sample. Multiple

analytical techniques can be used formetabolite profiling

(Shulaev 2006, Sumner et al. 2003). These techniques

includeNMR,GC-MS, liquid chromatography–mass spec-

trometry (LC-MS), capillary electrophoresis–mass spectro-

metry (CE-MS) and FT-IR spectroscopy. The advantages

and disadvantages of each technique for metabolite

profiling were previously discussed (Shulaev 2006,
Sumner et al. 2003).

To date, GC-MS is the most developed analytical

platform for plantmetabolite profiling. Historically, it was

one of the first techniques used for high-throughput

metabolite profiling in plants (Roessner et al. 2000). The

GC-MS is generally performed using electron impact (EI)

quadrupole or time-of-flight (TOF) mass spectrometry

(Fiehn et al. 2000, Roessner et al. 2000). Using GC-MS, it
is possible to profile several hundred compounds
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Fig. 1. Summarymass spectrum of Arabidopsis leaf extract following either chromatographic separation (A) or direct infusion (B). Ions were detected for

positive ionization full-scan MS. Chromatography was performed on a 0.1 � 450 mmmonolithic C18 column. Summary mass spectrum, which derives

fromadding up allmass scans over the chromatographic run, shows distribution ofm/zwithin the acquisitionmass range of 100–1500 atomicmass units,

exceeding S/N > 6.
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belonging to diverse chemical classes including sugars,

organic acids, amino acids, sugar alcohols, aromatic

amines and fatty acids.

Themajor advantage ofGC-MS formetabolomics is the

availability of both commercially and publicly available

EI spectral libraries (Halket et al. 2005). The limitation of
the GC-MS profiling is that it can only analyze volatile

compounds or compounds that can be volatilized

following chemical derivatization.

For non-volatile compounds, LC-MS and CE-MS pro-

vide a better alternative. LC-MS application in metab-

olomics is steadily increasing especially after the recent

adoption of the ultra performance liquid chromatography

technology that can dramatically increase separation
efficiency and decrease analysis time (Giri et al. 2007,

Granger et al. 2007). CE-MS provides a viable alternative

for metabolite profiling due to its high resolving power,

low sample volume requirements and the ability to

separate cations, anions and uncharged molecules

simultaneously (Soga et al. 2003).

Targeted analysis

Untargeted metabolite profiling is often paralleled with

metabolomics because it is most often used in metab-

olomics studies. It is particularly useful to obtain a global

view of the metabolism of cells or identify new

metabolites/pathways. A substantial drawback of untar-

geted profiling is that it is semiquantitative, i.e. it provides

relative concentration data based on the same ‘surrogate’
internal standard. These semiquantitative data have to

be further validated using targeted quantitative assays.

Targeted profiling is used when it is necessary to

determine the precise concentration of a limited number

of known metabolites and provides a very low limit of

detection. Targeted analysis has been widely used to

follow the dynamics of a limited number of metabolites

known to be involved in a particular stress.
Targeted analysis can also be used for comparative

metabolite profiling of a large number of known

metabolites. For example, highly parallel targeted assays

based on SRMcan be used for very sensitive simultaneous

analysis of over 100 metabolites in a single chromato-

graphic run [see review by Bajad and Shulaev (2007)].

For truly quantitative measurement, targeted com-

pounds should be available in a pure form and preferably
labeled with stable isotope, which provides a significant

challenge for plant stress research because many plant

metabolites involved in stress response and their inter-

mediates are not available in a pure form. A joint effort of

the plant community and the chemical industry is

required to synthesize these compounds and make them

available to researchers.

An alternative approach for quantitative profiling may

provide in vivo enrichment of metabolites with stable

isotopes like 13C and 15N. This can be achieved by

growing plants or plant cells in liquid media containing
15N-labeled inorganic nitrogen sources (K15NO3,
15NH415NO3) or

13C-labeled carbon dioxide or glucose
(Hegeman et al. 2007, Huege et al. 2007). This approach

allows for in vivo synthesis of stable isotope-labeled plant

metabolites that can be used for quantitative metabolite

analysis using stable isotope dilution method. Further-

more, extract of the fully labeled plant can be used as

a complex internal standard for simultaneous quantitative

profiling of the large number of known metabolites.

Uniformmetabolic labeling combined with MS has been
successfully used for quantitative metabolic profiling in

microorganisms (Lafaye et al. 2005, Mashego et al. 2004,

Wu et al. 2005). In addition, in vivo stable isotope

enrichment followed by metabolite analysis over the

time-course experiment can provide information on

metabolic fluxes and overall dynamics of metabolism

(Hellerstein 2003, Huege et al. 2007, Kleijn et al. 2007,

Matsuda et al. 2003). This information is essential for
mathematical modeling of metabolic networks.

Metabolomics data analysis and the ‘plant
metabolome’ challenge

Metabolomics, similar to transcriptomics and proteo-

mics, generates huge volumes of data that require

specialized bioinformatics and data mining tools to gain

knowledge. Metabolomics requires automated raw data

processing software that can handle data from various

instruments, extensive mass spectral libraries and power-

ful databasemanagement systems that can store both raw
and metadata.

Metabolomics data handling, analysis and mining and

its integration with other omics platforms have been

dramatically improved in recent years because of the

development of an array of publicly available bioin-

formatics tools. These include pathway databases and

pathway viewers KEGG (http://www.genome.ad.jp/kegg/

), Atomic Reconstruction of Metabolism database (http://
www.metabolome.jp/), BioCyc (http://biocyc.org) (Paley

and Karp 2006), MetaCyc (http://metacyc.org/) (Caspi

et al. 2006), AraCyc (http://www.Arabidopsis.org/tools/

aracyc/) (Zhang et al. 2005), MapMan (http://gabi.rzpd.

de/projects/MapMan/) (Thimm et al. 2004), KaPPA-View

(http://kpv.kazusa.or.jp/kappa-view/) (Tokimatsu et al.

2005) and BioPathAT (http://www.ibc.wsu.edu/research/

lange/public%5Ffolder/) (Lange and Ghassemian 2005),
the data model for plant metabolomics experiments

ArMet (http://www.armet.org/), and the functional geno-

mics databases MetNetDB (http://www.metnetdb.org/
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MetNet_db.htm) and DOME (http://medicago.vbi.vt.

edu).

One significant challenge for plantmetabolomics is the

lack of a fully described and annotated metabolome for

any plant species. Estimates are that the plant kingdom

produce 90 000–200 000 different metabolites (Fiehn
et al. 2001), but the actual number of metabolites present

in any individual plant species is still unknown. Even in

microorganisms with a simpler and better understood

metabolism, the exact number of metabolites in each cell

remains unknown. Understanding the metabolome of

each plant species is critical to understanding gene

function and coupling each of these functions to plant

traits.

Combination of the omics platforms and
systems biology approach

The real power of the omics approach is the ability to look

at the studied response on a number of different levels,

including transcripts, proteins or metabolites. Integrated

analysis of metabolite and transcript or metabolite and

protein levels in several plant systems already identified

several important features of plant metabolic regulation.

Currently, most plant stress response studies use largely

either one or a combination of two approaches, whereas
integrated studies of the plant stress response using

a combination of all three approaches are just appearing.

Integration of the transcriptomics and metabolomics

data to elucidate gene-to-gene and metabolite-to-gene

networks in Arabidopsis under sulfur deficiency was de-

scribed by Hirai et al. (2005), while combined metabo-

lomics and proteomics approach to study the Arabidopsis

response to a cesium stress was described by Le Lay et al.
(2006). It is important to mention that combined analysis

of the metabolomics data with other omics data is quite

challenging because of the data integration problem

(Mehrotra and Mendes 2006). This hampers the wide use

of combined data sets and requires further development

of data integration and data fusion approaches. Another

issue with combined omics studies is related to sample

collection and processing. Most of the combined studies
use different samples for transcripts, proteins and

metabolite measurements. This can introduce a signifi-

cant error in the subsequent analysis of the combined

data and cause lack of correlation in RNA, protein and

metabolite levels because of the time difference in

quenching metabolism between different samples. Ide-

ally, all three types of molecules should be analyzed from

the same biological sample, and the proper quenching
and sampling technique that allows for preservation of

RNA, proteins and metabolites should be used (Martins

et al. 2007, Weckwerth et al. 2004).

Furthermore, omics data should be combined with

mathematical modeling of the biological systems in the

so-called systems biology approach (van der Greef et al.

2004, Kell 2006, Kitano 2002, Sims et al. 2007). Systems

biology approach allows not only to analyze the topology

of the biochemical and signaling networks involved in
stress response but also to capture the dynamics of the

response.

Systems biology research requires close interaction of

biologists andmathematicians in all steps of experimental

design, data collection and data analysis and mining

(Goel et al. 2006). One of the most critical aspects for

successful systems biology study is the type of high-

throughput data available for mathematical modeling.
Time-course experiments can provide information on

system’s dynamics, but the exact time points for sample

collection following initial perturbation should be

properly selected, based on the systems behavior, to

capture both fast and slow responses. Data providing

absolute quantities of metabolites are more suited for

mathematical modeling than semiquantitative data cur-

rently provided by many metabolomics studies. Addi-
tionally, data on enzyme activities rather than protein

levels are required by most dynamic metabolic modeling

approaches.

Mathematical modeling of plant stress response using

‘omics’ data is quite limited. It is partially because of the

lack of proper time-course data sets and insufficient ‘top-

down’ modeling approaches that can utilize large tran-

scriptomics, proteomics and metabolomics datasets.
Morioka et al. (2007) used, for example, the linear dyna-

mical system to model gene expression and metabolite

time series data from Arabidopsis grown under sulfur

starvation conditions. Using this variation of Markov

model, the authors not only were able to detect known

changes in gene expression and metabolite accumulation

but also identified novel changes involved in the stress

response (Morioka et al. 2007). This study shows the power
of the systems biology approach in understanding and

predicting the behavior of the plant system under stress.

Metabolomics studies of stress in plants

Metabolomics was used to study temperature (Cook et al.

2004, Kaplan et al. 2004; Kaplan et al., 2007), water and

salinity (Brosche et al. 2005, Cramer et al. 2007, Gong

et al. 2005, Johnson et al. 2003, Kim et al., 2007),

sulfur (Nikiforova et al. 2004, Nikiforova et al., 2005a,

Nikiforova et al., 2005b), phosphorus (Hernandez et al.

2007), oxidative (Baxter et al. 2007) and heavy metal
(Le Lay et al. 2006) stress as well as a combination of

multiple stresses (Rizhsky et al. 2004) in plants. Below,we

briefly describe some of these studies.
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Temperature stress

Metabolite profilingwas used to understand the dynamics
of the Arabidopsis response to temperature stress (Kaplan

et al. 2004). The authors performed GC-MS profiling of

Arabidopsis plants subjected to heat and cold stress and

identified a set of knownmetabolites as well as unknown

mass spectral tags that specifically respond to heat or cold

stress or to both. Cold stress appears to cause a more

dramatic metabolic response, but what was more sur-

prising was that the majority of the metabolites affected
by the heat were also affected by the cold andmanyof the

metabolites induced by both stresses were previously

unlinked to temperature stress. In a subsequent study,

these data were coanalyzed with transcript profiling data

to uncover mechanism underlying cold acclimation in

Arabidopsis (Kaplan et al. 2007). Based on the fact that for

some metabolic processes, transcript abundance corre-

lated with metabolite abundance and for other metabolic
processes, they did not correlate, the authors made

a conclusion that regulatory processes independent of

transcript abundance could play a key role in the

metabolic adjustments of plants during cold acclimation

(Kaplan et al. 2007).

Global GC-TOF-MS metabolite profiling of cold-

stressed Arabidopsis plants that differ in freezing toler-

ance in comparison with plants overexpressing the
C-repeat/dehydration responsive element-binding factor

(CBF) 3 revealed that Arabidopsis metabolome is exten-

sively reconfigured in response to low temperature and

suggested a prominent role for the CBF cold response

pathway in this process (Cook et al. 2004).

In an example of targeted profiling, Morsy et al. (2007)

studied the carbohydrate metabolism of rice under chill-

ing, salt and osmotic stress in different genotypes differing
in chilling tolerance. Using a quantitative HPLC assay, the

authors measured the levels of soluble carbohydrates in

thechilling-tolerant andchilling-sensitivegenotypesunder

chilling stress and identified differences in carbohydrate

accumulation. The chilling-tolerant genotype accumu-

lated galactose and raffinose under stress, while these

sugars declined in the chilling-sensitive genotype. These

genotypes also responded differently to salt and osmotic
stress. Based on the carbohydrate profiling results com-

bined with the measurements of oxidative products and

antioxidative enzymes, the authors concluded that the

chilling-tolerant genotype possess a more effective ROS-

scavenging system (Morsy et al. 2007).

Water and salt stress

Several metabolomics studies on salt-stressed plants have

been reported (J. Kopka this issue). Metabolic fingerprint-

ing of salt stress in tomato was used to identify metabolic

changes in fruits under salinity stress (Johnson et al. 2003).

The authors studied two tomato varieties subjected to

salinity stress. Whole fruit flesh extracts were finger-

printed using FT-IR spectroscopy. Metabolic fingerprints

were analyzed using unsupervised (PCA) and supervised
(DFA) algorithms. PCA was not able to discriminate

between control and salt-treated groups in any variety,

while DFA was able to classify control and salt-treated

groups in both varieties (Johnson et al. 2003). The authors

also employed a GA to identify the regions within the FT-

IR spectrum that are important for classification. These

regions corresponded to saturated and unsaturated nitrile

compounds, cyanide-containingcompoundsanda strong
broad peak of NH2 (an amino radical) and other nitrogen-

containing compounds.

More detailedmetabolic analysis of salt stress response

was performed in a time-course experiment on salt-

stressed Arabidopsis cell cultures (Kim et al. 2007). GC-

MS and LC-MS profiling was performed at 0.5, 1, 2, 4, 12,

24, 48 and 72 h after a salt treatment at 100 mM NaCl.

Bioinformatics analysis of the data using PCA and batch-
learning self-organizing mapping analysis revealed that

short-term responses to salt stress included the induction

of the methylation cycle for the supply of methyl groups,

the phenylpropanoid pathway for lignin production and

glycine betaine production (Kim et al. 2007). The long-

term effects were the coinduction of glycolysis and

sucrose metabolism and coreduction of the methylation

cycle.
GC-MS profiling, in combination with microarray

analysis, was also used to compare salinity stress

competence in the extremophile Thellungiella halophila

with Arabidopsis (Gong et al. 2005). The authors found

drastic differences in metabolic profiles of the two

species. Generally, Thellungiella had a higher metabolite

levels both without and with salt stress when compared

with Arabidopsis. In Arabidopsis, 150 mM salt stress
caused increase in sucrose, proline and an unknown

metabolite (putative complex sugar). In Thellungiella, the

response wasmore complex. In addition to having higher

levels of manymetabolites before stress, changes in other

sugars, sugar alcohols, organic acids and phosphate were

detected (Gong et al. 2005).

An integrated study of the early and late changes in

transcript and metabolite profiles revealed difference in
the dynamics of grapevine response to water and salinity

stress (Cramer et al. 2007) and showed the differences in

molecular response to water deficit and salinity. GC-MS

profiling and anion-exchange chromatography with UV

detection revealed that concentration of glucose, malate

and proline is higher in water-deficit-treated plants, than

in salt-stressed plants. These differences in metabolite
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levels were correlatedwith differences in transcript levels

of many genes involved in energy metabolism and

nitrogen assimilation, suggesting a higher demand in

water-deficit-treated plants to adjust osmotically, detoxify

ROS and cope with photoinhibition than in salt-stressed

plants (Cramer et al. 2007).
In another interesting study, transcript expression and

metabolite profiling were used to study the salt-tolerant

Populus euphratica plant grown within its native habitat,

the Negev desert, in order to understand the mechanism

underlying stress acclimation (Brosche et al. 2005).

Sulfur and phosphorus stress

Sulfur stress was studied using metabolomics by several

groups and is discussed in a paper by Höefgen and

Nikiforova in this issue. Therefore, we will just mention

several published reports without discussing them in

detail.

In a metabolomics study of sulfur deficiency in

Arabidopsis, Nikiforova et al. (2005b) used untargeted

GC-MS and LC-MS profiling to monitor the response
of 134 known metabolites and 6023 unknown non-

redundant ion traces to sulfur starvation. Based on the

profiling data, the coordinated network of metabolic

regulation induced by sulfur stress was successfully

reconstructed (Nikiforova et al. 2005b). These data were

subsequently analyzed together with transcriptomics

data to reconstruct gene–metabolite correlation networks

involved in Arabidopsis response to sulfur deprivation
(Nikiforova et al. 2005a).

Combination of transcriptomics and metabolomics

approaches was used to investigate transcriptional and

metabolic responses of bean plants growing under P-

deficient and P-sufficient conditions (Hernandez et al.

2007). GS-TOF-MS profiling of bean roots under phos-

phorus stress conditions identified a set of metabolites

significantly changed in P-deficient roots. Most metabo-
lites, including amino acids, polyols and sugars, were

increased in P-stressed plants (Hernandez et al. 2007).

Oxidative stress

Despite the well-established role of several metabolic

systems, including the ascorbate–glutathione system, in

oxidative stress response, only few reports exist on using
metabolomics to study oxidative stress response in plants.

Baxter et al. (2007) studied the dynamics of metabolic

change in response to oxidative stress caused by

menadione in heterotrophic Arabidopsis cells. The

authors used GC-MS profiling to measure the levels of

50 polar metabolites following stress treatment and

correlated metabolic changes to changes in mRNA levels

measured in the same sample. In this study, oxidative

stress initially caused dramatic inhibition of the TCAcycle

and large sectors of amino acid metabolism followed

by backing up of glycolysis and diversion of carbon into

the oxidative pentose phosphate pathway (Baxter et al.

2007). Transcriptomics analysis of the same samples also
revealed a coordinated transcriptional response to cope

with the stress with a major switch from anabolic to

catabolic metabolism.

Heavy metal stress

Metabolic consequences of stress induced by heavy

metals in plants were studied using NMR-based meta-
bolic fingerprinting (Bailey et al. 2003) and metabolite

profiling (Le Lay et al. 2006).

Metabolic fingerprinting using NMR spectroscopy

combined with multivariate statistics analysis was used

to discriminate between control and cadmium-treated

Silene cucubalus cell cultures (Bailey et al. 2003).

Compounds that showed an increase in cadmium-treated

cells were identified as malic acid and acetate, while
glutamate and branched chain amino acids decreased.

Metabolite profiling of Arabidopsis cells exposed to

cesium stress usingNMR showed thatmetabolite changes

because of a Cs stress, include mainly sugar metabolism

and glycolytic fluxes, and depended on potassium levels

in the cell (Le Lay et al. 2006).

Stress combination

Traditionally, abiotic stress conditions are studied in

plants by applying a single stress condition such as

drought, salinity or heat, and analyzing the different

molecular aspects of plant acclimation. This type of

analysis is, however, in sharp contrast to the conditions

that occur in nature, in which plants are routinely

subjected to a combination of different abiotic stresses.
Drought and heat stress represent an excellent example of

two different abiotic stress conditions that occur in the

field simultaneously. A sum of all major US weather

disasters between 1980 and 2004 reveals that a combi-

nation of drought and heat caused an excess of $120

billion in damages. In contrast, over the same period,

drought that was not accompanied by heat stress caused

some $20 billion in damages (Mittler 2006, Rizhsky et al.
2004). Metabolite profiling of plants subjected to

drought, heat stress or a combination of drought and

heat stress revealed that plants subject to a combination

of drought and heat stress accumulated sucrose and

other sugars such as maltose and gulose (Rizhsky et al.

2004). In contrast, Pro that accumulated in plants

subjected to drought did not accumulate in plants during
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a combination of drought and heat stress. Heat stress

was found to exaggerate the toxicity of Pro to cells, sug-

gesting that during a combination of drought and heat

stress, sucrose replaces Pro in plants as the major osmo-

protectant. These findings of different metabolic responses

to stress combination in comparison with each individ-
ual stress highlight the need for further studies of different

stress combinations at the metabolic level (Mittler 2006).

Perspective

Despite being a relatively new approach in plant biology,

metabolomics is becoming one of the major tools in

studying plant stress responses. Significant new discov-

eries have already been made in the field by using
metabolomics alone or in combination with other omics

disciplines. In the future, we envision more studies that

include metabolomics as an integral part of the systems

biology approach to study plant response to a variety of

stress conditions. Combination of metabolomics, proteo-

mics, transcriptomics and mathematical modeling will

provide us with a holistic view of how plants respond to

abiotic and biotic stress and enable us to develop
advanced strategies to enhance the tolerance of different

plants and crops to biotic and abiotic stress conditions.
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